

Printed in Canada Copyright 2006-2010 Harding Instruments

MicroComm DXL

DXL Wonderware Host Example

April 2010

Page 2 Document DXL-APP-201-1.0

 DXL Wonderware Example

Document DXL-APP-201-1.0 Page i

Table of Contents
1 INTRODUCTION ... 1

2 DXL HOST PROTOCOL SETUP... 1

3 WONDERWARE I/O DRIVER SETUP... 3

3.1.1 Modbus Communication Setup: MBTCP DA Server... 3
3.1.2 OMRON Communication Setup: FINSGTWY Server.. 6

4 CREATING A WONDERWARE INTOUCH WINDOW .. 9

5 SIMPLE DXL EXAMPLE USING STATION STATUS REGISTERS .. 10

5.1 SETTING UP REGISTER ADDRESSES ON THE DXL ... 10
5.2 SETTING UP WONDERWARE TAGS FOR REGISTERS IN THE DXL SYSTEM:... 13

5.2.1 Creating Tags for communication with the DXL... 13
5.2.2 Wonderware Tag for determining communications status of DXL System ... 15

5.3 CONFIGURING HOST BEHAVIOUR ... 15
5.3.1 Configuring the Communication Status Indicator... 15
5.3.2 Assigning Actions/Status Indicators to Intercom Icons ... 16
5.3.3 Assigning Actions to the Answer Next Call and End Call Buttons .. 17
5.3.4 Playing a sound when call requests are active.. 18

5.3.4.1 Playing a periodic sound when calls are in the queue ..19
5.3.4.2 Playing a sound when a new call enters the queue...19

5.3.5 Configuring Queue Text Display... 20
5.3.5.1 Simple Text Display...20
5.3.5.2 More Complex Text Display Using Strings and Scripts ..21

6 DXL EXAMPLE USING MASTER STATUS MESSAGES... 22

6.1 SETTING UP REGISTER ADDRESSES ON THE DXL SYSTEM .. 22
6.2 TURNING OFF THE “DONE” SETTING FOR MASTER STATUS MESSAGES .. 24
6.3 SETTING UP WONDERWARE TAGS FOR REGISTERS IN THE DXL SYSTEM:... 24

6.3.1 Creating Tags for communication with the DXL... 25
6.3.2 Creating Tags for station status and master connection status... 26
6.3.3 Creating Tags for determining when new messages arrive... 27
6.3.4 Creating a Pointer Tag to simulate array operation... 28
6.3.5 Wonderware Tag for determining communications status of DXL System ... 28

6.4 CREATING A SCRIPT TO SET STATION STATUS AND MASTER CONNECTION STATUS... 28
6.4.1 Setting last register values... 29
6.4.2 Setting station status for call request and call request cancel .. 30
6.4.3 Setting station status and master connection status for intercom call connections .. 30
6.4.4 Setting station status and master connection status for call disconnections ... 31

6.5 CREATING A SCRIPT TO REQUEST CURRENT STATUS ON STARTUP AND COMMUNICATION LOSS 32
6.6 CONFIGURING HOST BEHAVIOUR ... 33

6.6.1 Configuring the Communication Status Indicator... 33
6.6.2 Assigning Actions/Status Indicators to Intercom Icons ... 34
6.6.3 Assigning Actions to the Answer Next Call and End Call Buttons .. 35
6.6.4 Playing a sound when call requests are active.. 36

6.6.4.1 Playing a periodic sound when calls are in the queue ..37
6.6.4.2 Playing a sound when a new call enters the queue...37

6.6.5 Configuring Queue Text Display... 38
6.6.5.1 Simple Text Display...38
6.6.5.2 More Complex Text Display Using Strings and Scripts ..38

 DXL Wonderware Example

Document DXL-APP-201-1.0 Page 1

1 Introduction
The MicroComm DXI and DXL systems are designed to allow external control and monitoring of intercom
functions using a number of “host port” protocols.

Among the protocols the DXI and DXL can work with are protocols in which the DXI or DXL system can
emulate a PLC, allowing a standard industrial control package such as Wonderware InTouch to communicate with
the intercom system using standard protocols.

Two PLC protocols that the DXI and DXL systems can use are Modbus Ethernet (Modbus TCP/IP) and Omron
Ethernet (Omron FINS).

This document will outline how to make up a simple intercom system interface using Wonderware InTouch along
with either of the Wonderware supplied Modbus MBTCP DA Server or Omron FINS Server.

Examples in this document assume you have some knowledge of Wonderware InTouch and its scripting language.

2 DXL Host Protocol Setup
DXL Administrator (provided with the intercom system) is the Windows program used to configure all aspects of
the intercom system’s operation. Using this program, we will now configure the DXL to communicate with an
external host (typically a touchscreen master). The overall configuration of an intercom system is beyond the
scope of this document, so the following example assumes that a configuration has already been created and all
that needs to be configured is the host port. For information on general intercom configuration, consult the
documents “Microcomm DXL Configuration Example” and “Microcomm DXL Administration Software & Local
User Interface”.

Start DXL Administrator and open the intercom systems configuration. The following example has a
configuration with one exchange (consisting of one DCC), one TMM master, and six single button intercom
stations.

 DXL Wonderware Example

Page 2 Document DXL-APP-201-1.0

Select “Host Ports” from the drop down
menu.

Click the “New” button to add a new host port. On
the “Connection” tab, select the exchange that the
host will connect to. This example uses an Ethernet
connection rather than serial, so select Ethernet.
Selecting an exchange will automatically fill in the IP
Address field with the IP address assigned to the
selected exchange. The IP address of the exchange is
set in the exchange properties window and cannot be
changed here. The port number to be used for host-
DXL communication is entered in to the “Port” field.
Modbus typically uses port 502 and Omron FINS
typically uses port 9600, although they can both be
configured differently. In this example, the typical
port numbers are used.

On the “Protocol” tab, select “Register Based
Messages” and set the “PLC Protocol” to either
“Modbus/TCP” or “Omron/UDP”. Now set how
many digits the PLC uses to specify register
addresses. Note that DXL specifies digits differently
than Wonderware because the DXL does not count
the first (unchanging) digit. In this example, “Digits”
is set to 4 in DXL administrator. This results in
addresses of the form “4xxxx” (for Modbus) or
“Dxxxx” (for Omron).

If Modbus is being used, the “PLC Network Address
Node” can be left as zero. If Omron FINS is being
used, we also need to specify “Node”, “Network”,

 DXL Wonderware Example

Document DXL-APP-201-1.0 Page 3

and “Module”. The “PLC Network Address Node” should be set to the last byte of the host computer’s IP address
(for example, if the PLC’s IP address is 192.168.0.200, then PLC node is 200). “Network” and “Module” are set
to zero in this example.

The DXL system has a mechanism to
limit the permissions for masters to call
stations, masters, page zones, or other
functions. Typically this is used for
stand-alone masters to limit what they
can call, but this also normally applies to
host-controlled masters as well. You can
set the DXL system to always permit a
command from a host to operate
(bypassing normal permissions). To do
this, select “System” from the main drop
down menu, then go to the “Master
Operations” tab. Un-check the
“Disable All Permission Checks” and
check the “Disable Host Permission Checks” check boxes.

Later, we will need to define registers to pass information between the DXL and it’s host but first we will set up
the host computer side of the interface.

3 Wonderware I/O Driver Setup
Before programming the graphic user interface of the touchscreen or HMI itself, first the link between the
touchscreen/HMI host and the DXI or DXL system must be created.

This example covers two different communication protocol servers: Omron FINS and Modbus TCP/IP. Both are
set up in a similar manner. First the I/O server is configured and second, “topics” are set up. Topics are essentially
communication channels between Wonderware and the I/O server. Only one communication protocol should be
used at a time, so go through the section pertaining to your protocol and then skip to Section 3: Simple DXL
Example Using Status Registers.

These sections are applicable to both DXI and DXL setup. Anything that mentions DXL below is equally
applicable to setup for the DXI system as well.

3.1.1 Modbus Communication Setup: MBTCP DA Server
First, you will need to install the Wonderware MBTCP DA Server using the Wonderware Device Integration
setup disc. The Modbus TCP/IP driver should be found in the “Schneider Automation” section.

Set up the MBTCP DA Server by opening the Wonderware ArchestrA System Management Console.

 DXL Wonderware Example

Page 4 Document DXL-APP-201-1.0

Open the tree view up by expanding the
”DAServer Manager/Default Group/Local/ArchestrA.DASMBTCP.1/Configuration” entry.

Select the “TCPIP_Port_000” entry then select the “Action/Add ModbusPLC Object” menu item.

Name your new object with a descriptive name. Then change the Maximum outstanding messages, Use Concept
data structures (Longs), and Use Concept data structures (Reals) parameters as below.

In the “Network address” field you will need to set the network address to the address that the DXL system is
configured as, which is not necessarily the address shown.

 DXL Wonderware Example

Document DXL-APP-201-1.0 Page 5

Also you may change the Register size (digits) value. This determines the starting number of the “register space”.
If this is set to 5, the DXI or DXL registers are 40000-49999, while if this is set to 6, the DXL registers are
400000-499999. This example uses registers in the range of 40000-49999 so this is set to 5 here.

Now that the basic parameters of the DXL “PLC” are set up, the topics can be defined.

Select the “Device Groups” tab, then right click any of the blank lines and select “Add”. Change the name of the
newly added topic to a descriptive identifier of the DXL interface, and change the Update Interval to how often
the host will poll the DXL system for new status updates. Add the below topics, then click the “save” icon (the
floppy disk icon) on the top right corner.

 DXL Wonderware Example

Page 6 Document DXL-APP-201-1.0

Each PLC can be assigned multiple topics that can determine how often various registers within the device are
updated. In this example, we will create three “topic names” for interfacing to the DXL. While you do not need to
make more than one topic name, creating multiple topic names (particularly for read and write) can reduce the
amount of network traffic required in the system.

The “DXL_DEMO_QUEUE” topic will be the topic name for the DXL queue registers. These are the top calls on
the master’s queue. The update interval of 1000 ms shown here will update these every 1 second. These registers
are optional, and you only need them if you want to have an intercom call queue for display of the top calls on the
system.

The “DXL_DEMO_READ” topic will be the topic name for the DXL status registers. These are updates from the
DXL such as the status of a station’s call request button. You will want to set the update rate here to an
appropriate value. In this example the update interval of 200 ms will update the call request and other status
information 5 times per second.

The “DXL_DEMO_WRITE” topic will be the topic name for the DXL command registers. The command
registers are used to send commands (such as connection commands) from the host to the DXL system. Since
these are one way only (from the host to DXL) these do not need to be periodically read back, so the update
interval can be set to 0 for this topic.

Remember the topic names you have used, as these names will be used within the Touchscreen/HMI software
later.

This concludes the setup of the MBTCP DA Server. You can now exit the ArchestrA System Management
Console.

3.1.2 OMRON Communication Setup: FINSGTWY Server
First, you will need to install Wonderware Factory Suite 2000, OMRON Fins Gateway Server, and OMRON Fins
Gateway Ethernet Server using the Wonderware setup discs. These may be found on the “Device Integration”
disc. Wonderware Factory Suite 2000 is found in the Wonderware folder and both OMRON servers are found in
the OMRON folder. Make sure you have the latest version of the Ethernet server “ETN_UNIT” since older
versions will not start on machines using DHCP to obtain an IP address. Check http://www.plcsoft.ne.jp/soft/ for
updates.

After the software is installed, open the Fins Gateway Service

Manager. A “FinsGateway Service Manager” icon will appear
in your system tray- right click it and select “Setting”. Start the
services “CPU_UNIT” and “ETN_UNIT” then click on the “Start
FinsGateway Network Navigator” button.

 DXL Wonderware Example

Document DXL-APP-201-1.0 Page 7

The FinsGateway Network navigator window will open up. This is
where we will set up IP addresses for the host computer and the
DXL. Select “Ethernet” and click on “Property”.

Select the “Network” tab of the Ethernet properties window. This is where
the OMRON network number, node number, and communication number
of the host computer are entered.

Select the “Communication Unit” tab. This is where the IP address and port
number of the host computer are defined. Select the “IP Address Table”
option in the “FINS-IP Conversion” section

Select the “Nodes” tab. We need to define OMRON network nodes for the
DXL and the host computer. Create one node with the IP address listed on
the “Communication Unit” tab and the node number listed on the
“Network” tab. The network navigator should fill in the “Model” column
for this node as “ETN_UNIT/NT/95” automatically. Create another node
with the IP address and node number of the DXL (these must match the IP
address and node defined in the intercom system configuration created
with DXL Administrator). Note that the node number should be the same
as the last byte of the IP address. For example, if the IP address is
192.168.0.2 then the node number is 2.

 DXL Wonderware Example

Page 8 Document DXL-APP-201-1.0

Now we need to define the topics. Open the Omron Fins
Gateway IO Server (installed with Wonderware Factory Suite
2000). Select “Topic Definition” from the “Configure” menu.

Each PLC can be assigned multiple topics that can determine how often various registers within the device are
updated. In this example, we will create three topics for interfacing to the DXL. While you do not need to make
more than one topic name, creating multiple topic names (particularly for read and write) can reduce the amount
of network traffic required in the system. Each topic needs to be assigned an address to point to the proper device
on the OMRON network (in this case, the DXL) and an update interval to tell it how often to check the topic for
new data. All other settings should be left at their defaults (as shown below). The network address is entered into
the “Network.Node.Unit” field. Network and unit number are both typically zero. Node number is the node
number assigned to the DXL and should be identical to the last byte of the DXL’s IP address.

The “DXL_DEMO_QUEUE” topic (shown here) will be the
topic name for the DXL queue registers. These are the top calls
on the master’s queue. The queue does not need to be updated
extremely quickly so an update interval of 1000ms will be
sufficient. These registers are optional, and you only need them
if you want to have an intercom call queue for display of the
top calls on the system.

The “DXL_DEMO_READ” topic will be the topic name for the DXL status registers. These are updates from the
DXL such as the status of a station’s call request button. The update rate set here will determine the delay
between the call request button of a station being pressed and that call request arriving at the master. In this
example we will use 200ms, which will update the call request and other status information 5 times per second.

The “DXL_DEMO_WRITE” topic will be the topic name for the DXL command registers. The command
registers are used to send commands (such as connection commands) from the host to the DXL system. Since
these are one way only (from the host to DXL) these do not need to be periodically read back, so the update
interval can be set to 0 for this topic.

Remember the topic names you have used, as these names will be used within the touchscreen/HMI software
later.

 DXL Wonderware Example

Document DXL-APP-201-1.0 Page 9

4 Creating a Wonderware Intouch Window
You can now create the Touchscreen/HMI interface window.

With the Wonderware InTouch Application Manager, create a new application, and then start WindowMaker.
Right click on the “Windows” icon and select “New…”.

For this demo, we will create an intercom system consisting of one host master and six intercom stations.

You can create an intercom icon by grouping together circles and squares. Be sure to use the “Make Symbol”

button rather than the “Make Cell” button to group the objects or you will not be able to add the proper
actions to the intercom icons. It is easiest to create one icon, group it into a symbol, and then copy and paste it
five more times.

We can also add a list to show the queue of call requests coming in to the host master (Master 1). Make a

rectangle and add text to it using the text button . Wonderware uses a number of symbols as placeholders for
text, depending on how you would like it formatted. For our purposes, “#” is the text placeholder so enter “#”
where you want the station number to show up. Our queue will display a maximum of 5 call requests.

You will also want to add buttons (in this case, rectangles with text in them) used to answer the next queued call
and to end the current call, and an indicator of whether the host to intercom connection is working.

Your window should end up looking something like the one below:

 DXL Wonderware Example

Page 10 Document DXL-APP-201-1.0

5 Simple DXL Example Using Station Status Registers
This section shows how to configure a simple interface using the DXL “Station Status Registers”.

This portion applies only to DXL systems, as at this time only DXL systems have individual status registers for
stations and masters.

5.1 Setting up Register Addresses on the DXL
When using a register based host protocol, such as Modbus or Omron, information to be passed between the DXL
and host computer is placed in a series of registers which the DXL and computer can read from/write to. The
location of these registers and whether the DXL or computer writes to them varies based on the communication
mode used. In Peer to Peer mode, the host computer writes commands to command registers on the DXL and the
DXL writes responses into status registers on the computer. In Polled mode, all registers are located on the DXL.
The host computer writes commands to the DXL command registers and has to regularly read (poll) the DXL
status registers to see what is going on. This example uses Polled mode.

There are four basic types of registers needed for this example.

The M1Command registers are used to control Master 1 (the host master). Commands are sent from the host
computer to the DXL, with the first register (M1Command1) specifying the command and the other four registers
giving parameters that tell the DXL how to execute the command. For example, to make the DXL place a call
from Master 1 to Station 6, the host would write 7 (the code for “Ical”, the connect to intercom command) into
M1Command1, 1 (the ID number of the master making the call) into M1Command2, 6 (the ID number of the
station being called) into M1Command3, and 0 into the remaining M1Command registers (since they are not used
for intercom calls).

The DXL writes to the M1Status registers to indicate the connection state of Master 1. M1Status1 contains a
number indicating the type of device that Master 1 is connected to (0=nothing, 1=master, 2=station, 3=page zone),
and M1Status2 contains the ID number of the device.

The M1Queue registers contain the type and ID number of Master 1’s call request queue. M1Queue1 contains the
type of device at the top of Master 1’s queue, M1Queue2 contains the ID number of the device at the top of
Master 1’s queue, M1Queue3 and M1Queue4 contain the type and ID of the second device in the queue, and so
on. The queue registers are optional, but they are useful for displaying an ordered list of call requests on the
Touchscreen/HMI. The size of the queue is configurable via DXL Administrator and the number of registers
required would always be twice the number of devices that the queue can store. Note that regardless of the queue
length set here, the DXL will still queue up call requests internally; the queue registers simply determine how
much of that queue will be available for the host to read.

The DXL writes to the Station Status registers to indicate the connection state of the stations. Each bit of a station
register indicates a different condition that the station is either in or not. For any single condition, 1 means yes and
0 means no. The bits in a station status register that concern us in this example are bit 0 (the least significant bit),
which represents whether the station is in a call or not, and bit 2, which represents whether the station has a call
request pending or not.

For a complete set of commands, parameters, and status bits please see the document “DXL Host Interface
Specifications”, available at http://www.harding.ca.

 DXL Wonderware Example

Document DXL-APP-201-1.0 Page 11

For this example, we need to define the following registers:

Register/Tag Name Modbus Register Address Omron FINS Register Address

M1Command1 40001 D0001

M1Command2 40002 D0002

M1Command3 40003 D0003

M1Command4 40004 D0004

M1Command5 40005 D0005

M1Status1 40006 D0006

M1Status2 40007 D0007

M1Queue1 40011 D0011

M1Queue1 40012 D0012

M1Queue3 40013 D0013

M1Queue4 40014 D0014

M1Queue5 40015 D0015

M1Queue6 40016 D0016

M1Queue7 40017 D0017

M1Queue8 40018 D0018

M1Queue9 40019 D0019

M1Queue10 40020 D0020

S1Status 40021 D0021

S2Status 40022 D0022

S3Status 40023 D0023

S4Status 40024 D0024

S5Status 40025 D0025

S6Status 40026 D0026

The text and pictures below are for the Modbus protocol, but setting up registers for use with Omron is extremely
similar: simply replace the “4” at the start of every Modbus address with a “D”.

 DXL Wonderware Example

Page 12 Document DXL-APP-201-1.0

Select “Host Ports” from the drop down menu in DXL
Administrators configuration editor and double click the host
port we created earlier to bring up its properties window. Select
the “Masters” tab. To define command and status registers for
our master, we need to have selected the master from the list on
the left (i.e., there is a checkmark in the box next to Master 1’s
name) and have ”Independent Master Registers” selected.

Highlight “Master 1” and click on “Edit Master Registers”. The
fields under “DXL Address” are the starting addresses of the
different sets of registers. “Length” indicates how many registers
are contained in a set. Change the settings to match the following
screenshot and click “OK”. This will make Master 1’s command
registers 40001-40005 and Master 1’s Queue registers 40011-
40021. Note that register addresses are arbitrary, but duplicating the
settings shown here will make it easier to follow the Wonderware
tag setup in this document, since it uses the same addresses.

Click on the “Status Registers” tab and select “Masters” from
the drop down menu. Check the box next to Master 1 and,
while Master 1 is highlighted, enter 40006 into the
“Connection Status” field. This will set Master 1’s connection
status register addresses to 40006 and 40007.

 DXL Wonderware Example

Document DXL-APP-201-1.0 Page 13

Select “Station” from the drop down menu. For each station,
assign a register address for “Call Status”. Station call status
blocks are only one register long. This example uses address
40021 for Station 1, 40022 for station 2, and so on until
Station 6, which uses address 40026.

5.2 Setting up Wonderware Tags for registers
in the DXL System:

Wonderware uses “tags” to keep track of data, both internal to the program and obtained from external sources
such as the DXL. In this section we will define tags that correspond to the registers we defined on the DXL and a
tag internal to Wonderware that monitors the status of the host connection.

5.2.1 Creating Tags for communication with the DXL
Double clicking the “Tagname Dictionary” icon will bring up the following screen:

This screen is used to create and edit tag data. We need to define the following tags:

 M1Command1 to M1Command5 (used to send host master commands to the DXL)

 M1Status1 to M1Status2 (used to read the connection status of the host master)

 M1Queue1 to M1Queue10 (used to keep track of the call request queue for the host)

 S1Status to S6Status (used to read the status of stations 1 to 6)

The tags M1Command1 to M1Command5 should be set as “Read/Write”. All the other tags should be set as
“Read Only”.

A tag’s “Item” is set to the address of the DXL register that will be associated with the tag. DXL register
addresses were defined using DXL Administrator in section 5.1 of this document.

 DXL Wonderware Example

Page 14 Document DXL-APP-201-1.0

Clicking “Tag Type” brings up a prompt with all the possible
tag types. Memory registers are internal to the Wonderware
programming and I/O registers are obtained from Modbus
TCP/IP or other protocols. All of the tags we are defining
should be of the type “I/O Integer”.

Each tag needs to have an Access Name associated with it. These
access names are associated with the topics that we defined in Section 2
of this document and will tell Wonderware where to get tag data from
and how often to look for new tag data. Click on the “Access Name:…”
button and then on the “Add…” button in the window that appears.
You will now be looking at the “Modify Access Name” window.

“Application Name” is the IO Communication Server. Modbus TCP/IP
communication protocol uses the “DASMBTCP” server, and Omron FINS communication protocol uses the
“FINSGTWY” server.

The “Topic Name” is the topic name assigned while configuring the IO Server. Create one access name for each
of the topic names (DXL_DEMO_READ, DXL_DEMO_WRITE, and DXL_DEMO_QUEUE).

The “Protocol” is the method used to exchange data between the DA Server and Wonderware and can be set to
DDE or SuiteLink.

The “When to advise server” item indicates whether to constantly poll these registers (Advise all items) or when
to only poll them when they are being used by any running script or when any icon using them is visible (Advise
only active items). For this example it does not matter what “When to advise server” is set to, since there will
always be visible icons using the tags, but we recommend “Advise all items” to be safe.

Create the rest of the tags as listed in the table in section 5.1, making sure that the register addresses in DXL
Administrator match the “Item” addresses in Wonderware, and assigning the following access names to the tags:

 Tags M1Queue1 to M1Queue10 will use the access name associated with the
DXL_DEMO_QUEUE topic

 Tags M1Command1 to M1Command5 will use the access name associated with the
DXL_DEMO_WRITE topic

 Tags M1Status1 to M1Status2 and S1Status to S6Status will use the access name associated with
the DXL_DEMO_READ topic

You should now have all the DXL I/O tags defined. Double check by clicking on “Select…”, which brings up a
list of all tags defined in the current Wonderware project.

 DXL Wonderware Example

Document DXL-APP-201-1.0 Page 15

5.2.2 Wonderware Tag for determining communications status of DXL System
This tag is a DA server tag that indicates the
connection status of the DXL system

(Discrete is the Wonderware term for a Boolean
On/Off value)

This is set to 1 when the DA Server is connected
to the PLC (DXL system) and the DXL is
responding to polls, or 0 when the DA Server is
not connected to the PLC (DXL system).

5.3 Configuring Host Behaviour
Now we need to associate user actions with commands we want sent to the DXL, and tag values with what we
want displayed on screen. For information on the commands and register structure used for communication
between the DXL and a host, see “DXL Host Interface Specifications”, which is available for download at the
Harding Instruments website.

5.3.1 Configuring the Communication Status Indicator
Double click on the communication status indicator to bring up
the properties window for the communication status indicator:

We want the indicator to be green when communication
between the host and DXL is working, and red when there is a
problem. Click on the “Fill Color: Discrete” button to get to the
following window.

Set “Expression” to the name name of our communication
status tag (CommStatus).

 By clicking on the color boxes at the bottom of the window, you can set the color that will be displayed when
CommStatus is equal to 1 (communication is Ok) or equal to 0 (communication problem).

CommStatus

 DXL Wonderware Example

Page 16 Document DXL-APP-201-1.0

5.3.2 Assigning Actions/Status Indicators to Intercom Icons
Double-click an intercom icon to bring up its properties
window then click the “Action” button to set up what will
happen when the intercom icon is clicked on. We will set up
the icon so that clicking it will either cause a call to be made
from the host master to the station (if that master is not
already in a call to that station), or to end the call (if there is
already a call in progress) between the master and that station.
Enter the following in the script window:

The script checks M1Status1 and M1Status2 to determine if the host master is connected to a station and if it is, if
it connected to Station 1. If the master is connected to station 1, the “EndC” command (code 10) to end the call on
Master 1 is sent to the DXL (via the M1Command tags). If the host master is not connected to Station 1, an “Ical”
command (code 7) is sent to the DXL to place a call from Master 1 to Station 1.

To set up the icon to blink when the call button has been
pressed, select the “Blink” button in the station’s properties
window to bring up this window. Select a blink Fill Color as
shown and enter the following into the
”Expression – Blink When:” window

This setting blinks the intercom icon between its normal colour
and yellow when a call request comes in (i.e. when bit 2 of
S1Status is a 1).

IF M1Status1==1 AND M1Status2==1 THEN
 M1Command1=10;
 M1Command2=1;
 M1Command3=0;
 M1Command4=0;
 M1Command5=0;
ELSE
 M1Command1=7;
 M1Command2=1;
 M1Command3=1;
 M1Command4=0;
 M1Command5=0;
ENDIF;

S1Status.02==1

 DXL Wonderware Example

Document DXL-APP-201-1.0 Page 17

To set up the icon to change the intercom station color when it
is being called from the master, select the “Analog Fill Color”
button.

Set the “Expression” to

Break points are the values of the expression at which the color
will change. For station 1, we want to look at values of the tag S1Status so the expression is simply S1Status.
S1Status will have a value of 1 when Station 1 is in a call, and the setting above will cause its icon to turn green.
If S1Status has a value of 2 then Station 1 is listening to music. If S1Status has a value of 4, Station 1 has a
pending call request. If S1Status is greater than or equal to 8, station 1 is faulted and its icon will turn red. In this
example we are not setting up music listening so it doesn’t matter what color 2 is. 4 (call request pending) should
be set to grey, or else the station will flash between black and yellow instead of grey and yellow when a call
request is made.

5.3.3 Assigning Actions to the Answer Next Call and End Call Buttons
 This is very similar to defining what will happen when an
intercom icon is clicked on. Double click on the “Answer
Next Call” button to bring up that button’s properties
window, then click on “Action”. The script below sends the
“Next” command to the DXL telling it to connect Master 1
(the host master) to the next station in Master 1’s call request
queue.

We may also want to make the “Answer Next Call” button
disappear if there are no call requests queued. From the
“Answer Next Call” button properties window, click on
“Miscellaneous: Visibility” and enter the following expression.

When M1Queue1 is not equal to zero, there is a call queued for the host master so the button should be visible.
Since M1Queue1 is the top of the queue, it is the only queue tag we need to check.

S1Status

M1Command1=21;
M1Command2=1;
M1Command3=0;
M1Command4=0;
M1Command5=0;

M1Queue1

 DXL Wonderware Example

Page 18 Document DXL-APP-201-1.0

To set up the “End Current Call” button, go to its “Actions”
window. The script below sends the DXL the “EndC”
command to end the call between Master 1 and whatever
Master 1 is connected to.

We can make the “End Current Call” button disappear if there is
no call to end. Select “Miscellaneous: Visibility” from the “End
Current Call” buttons properties window and enter the
following expression:

M1Status1 will be equal to zero if the host master does not have a call in progress, and the above expression will
evaluate to zero, and the button will disappear.

5.3.4 Playing a sound when call requests are active
There are two ways to play a sound when there are calls in the intercom queue.

One would be to periodically sound a reminder tone every few seconds until all calls are answered.

The other method would be to play a sound when a new call comes into the queue. Methods to do each of the
above are shown below.

You can have a sound play when a new call comes into the queue and also have a periodic reminder tone by using
both methods.

M1Command1=10;
M1Command2=1;
M1Command3=0;
M1Command4=0;
M1Command5=0;

M1Queue1

 DXL Wonderware Example

Document DXL-APP-201-1.0 Page 19

5.3.4.1 Playing a periodic sound when calls are in the queue
To play a periodic reminder tone, you can use the queue
registers. When there is a call in the queue, the M1Status1
queue register will be non-zero.

You can create a condition script which will act periodically
whenever M1Status1 <> 0, and have it play a sound or do
other commands. The condition will be “M1Queue1<>0”, the
Condition Type should be “While TRUE”, and the period
between tones would be in the Every Msec box (10000 =
every 10.000 seconds). To play a notify sound using a sound
from the Windows sound files, you can use the following
script command

5.3.4.2 Playing a sound when a new call enters the queue
To play a sound when a new call enters the queue, you have to know when a new call comes into the queue.

The master message status block (usually used for more advanced host interfacing) can be used for this.
Whenever there is activity on the DXL system that a host might need to know, the DXL system can send a
message to the host consisting of a 5 register register block containing a command number and up to 4 additional
parameters. A new call request consists of a block of 5 registers, with the first register being 1 (call request
command), the second register being the master number, and the third register being the station number. You can
assign a set of master status registers in the DXL Administrator, then add a master message status register block
and write a condition script to play a sound whenever command
1 (Call request) is received.

First, go into the DXL Administrator, host ports, then click on
the host you created. Then go to the Masters tab, select your
master, then click the “Edit Master Registers…” button. Then
add a set of Master message status registers starting at 40027.

Save the configuration, upload it to your DXL system, and
Activate the new configuration.

PlaySound(“notify.wav”,1);

 DXL Wonderware Example

Page 20 Document DXL-APP-201-1.0

Secondly, you need to create tags for these master
status register tags. In this example we will call
them M1Read1 to M1Read5, with M1Read1 being
assigned to register 40027 through M1Read5 being
assigned to register 40031. Associate these with
the DXL_READ topic. The Wonderware tag entry
screen for 40027 is as follows.

Last, you need to create a data change script that runs when
M1Read1 changes, and that plays a sound when the first
register equals 1 and the second register equals your master
number. Create a new Data Change script,
with Tagname = “M1Read1” and the script containing

5.3.5 Configuring Queue Text Display
Three different kinds of call requests can occur in a DXL system: a call request from a station, a call request from
a master, and an audio level alarm. First, we will learn to display only the ID number of the device calling the
master. After that we will look at a more complex example that displays the device type and ID number.

5.3.5.1 Simple Text Display
To display the station number in the call request queue list,
double click on the “#” symbol in the list to open its properties
window and then select “Value Display: Analog”. M1Queue1
and M1Queue2 contain the device type and device ID,
respectively, of the first call request in Master 1’s queue. We
therefore want to set the Expression to “M1Queue2”, so its
value will take place of the “#” symbol, as shown here.

IF (M1Read1==1) AND (M1Read2==1) THEN
PlaySound(“Ringin.wav”,1);

ENDIF;

M1Queue2

 DXL Wonderware Example

Document DXL-APP-201-1.0 Page 21

5.3.5.2 More Complex Text Display Using Strings and Scripts
To make a more useful text display we need to define a few more tags to hold the text to be displayed, and then
write some scripts (small programs) to manipulate those tags. Define the following tags with a tag type of
“Memory Message”:

 QueueEntry1
 QueueEntry2
 QueueEntry3
 QueueEntry4
 QueueEntry5

These tags will hold the display text for each of the entries in the host masters queue. We will now write a set of
scripts to automatically enter the proper text into these tags based on the content of the tags M1Queue1 to
M1Queue10. Expand the “Scripts” item in the application explorer pane and right click on “Data Change”. When
any of the M1Queue tags change value, there has been some change in the call request queue and we need to
evaluate what should be displayed.

The script shown here checks the type and ID number of the
first call request in the queue, and puts an appropriate string
of text into QueueEntry1. This script is executed when
M1Queue1 changes value and an identical script should be
created that executes when M1Queue2 changes value. The
script checks the value of M1Queue1 to determine which
prefix (“Station “, “Master “, or “ALA Station “) should be
appended to the QueueEntry1 string, then appends the ID
number of the device requesting a call (which is contained in
M1Queue2). The Text() function used here takes a number
from a register and converts it into a string that can be stored
in the QueueEntry tag. Its syntax is “Text(<tag to be
converted to string>, <number formatting>)”. Please see
Wonderware’s scripting language documentation for more
information.

For each pair of M1Queue tags representing a single QueueEntry tag, a similar script needs to be created.
QueueEntry2 is updated when M1Queue3 or M1Queue4 change value, QueueEntry3 is updated when M1Queue5

IF M1Queue1==1 THEN
 QueueEntry1 = "Station " +Text(M1Queue2, "#");
ELSE
 IF M1Queue1==2 THEN
 QueueEntry1 = "Master " +Text(M1Queue2, "#");
 ELSE
 IF M1Queue1==3 THEN
 QueueEntry1 = "ALA Station " +Text(M1Queue2, "#");
 ELSE
 QueueEntry1 = "";
 ENDIF;
 ENDIF;
ENDIF;

 DXL Wonderware Example

Page 22 Document DXL-APP-201-1.0

or M1Queue6 change value, QueueEntry4 is updated when M1Queue7 or M1Queue8 change value, and
QueueEntry5 is updated when M1Queue9 or M1Queue10 change value.

6 DXL Example Using Master Status Messages
This section shows how to configure an interface using the more complicated but powerful “Master Status
Message” registers. The premise is similar to the above, with commands being sent from the host to the DXL
system through a block of 5 registers. However, in this case, the DXL system does not have separate registers for
stations indicating their status nor two registers for masters indicating what they are connected to. Instead, the
DXL system sends information to the host with a block of 5 registers in much the same way as the commands
above, with the first register being the command number and the remaining four registers indicating the
parameters. For example, an intercom call request would be sent as the register 1 (“Icrq”, intercom call request)
then the master number the call is going to, then the station number that is calling in.

In order to use these in your host you will need to write short scripts that take these status messages and set
internal registers, likely in much the form of the above with each station having its own status for calling in and in
an call, and each master indicating what it is connected to.

This portion applies both to DXL and DXI systems.

In this example, the scripts will be written such that the station status registers and master connection status
registers will be the same as the simplified example above, so that the same programming as the above example
can be used with both DXI and DXL systems, and with enhanced features as necessary.

6.1 Setting up Register Addresses on the DXL system
When using a register based host protocol, such as Modbus or Omron, information to be passed between the DXL
and host computer is placed in a series of registers which the DXL and computer can read from/write to. The
location of these registers and whether the DXL or computer writes to them varies based on the communication
mode used. In Peer to Peer mode, the host computer writes commands to command registers on the DXL and the
DXL writes responses into status registers on the computer. In Polled mode, all registers are located on the DXL.
The host computer writes commands to the DXL command registers and has to regularly read (poll) the DXL
status registers to see what is going on. This example uses Polled mode.

There are three basic types of registers needed for this example.

The M1Command registers are used to control Master 1 (the host master). Commands are sent from the host
computer to the DXL, with the first register (M1Command1) specifying the command and the other four registers
giving parameters that tell the DXL how to execute the command. For example, to make the DXL place a call
from Master 1 to Station 6, the host would write 7 (the code for “Intercom Call”) into M1Command1, 1 (the ID
number of the master making the call) into M1Command2, 6 (the ID number of the station being called) into
M1Command3, and 0 into the remaining M1Command registers (since they are not used for intercom calls).

The M1Read registers indicate the message received from the DXL system. Status update messages are sent from
the DXL to the host, with the first register (M1Read1) specifying the status message code and the other four
registers giving parameters relevant to the command. For example, when an intercom call button is pressed from
Station 3 which calls into Master, the DXL would write 1 (the “Icrq” code indicating an intercom call request)
into M1Read1, 1 (the ID number of the master that the station is calling into) into M1Read2, 3 (the ID number of
the station calling in) into M1Read3, and 0 into the remaining M1Read registers (since they are not used for
intercom call requests).

 DXL Wonderware Example

Document DXL-APP-201-1.0 Page 23

The M1Queue registers contain the type and ID number of Master 1’s call request queue. M1Queue1 contains the
type of device at the top of Master 1’s queue, M1Queue2 contains the ID number of the device at the top of
Master 1’s queue, M1Queue3 and M1Queue4 contain the type and ID of the second device in the queue, and so
on. The queue registers are optional, but they are useful for displaying an ordered list of call requests on the host.
The size of the queue is configurable via the DXL Administrator or DXI SAC software and the number of
registers required would always be twice the number of devices that the queue can store. Note that regardless of
the queue length set here, the DXL will still queue up call requests internally; the queue registers simply
determine how much of that queue will be available for the host to read.

For a complete set of commands and parameters, please see the document “DXL Host Interface Specifications”,
available at http://www.harding.ca.

For this example, we need to define the following registers:

Register/Tag Name Modbus Register Address Omron FINS Register Address

M1Command1 40001 D0001

M1Command2 40002 D0002

M1Command3 40003 D0003

M1Command4 40004 D0004

M1Command5 40005 D0005

M1Queue1 40011 D0011

M1Queue1 40012 D0012

M1Queue3 40013 D0013

M1Queue4 40014 D0014

M1Queue5 40015 D0015

M1Queue6 40016 D0016

M1Queue7 40017 D0017

M1Queue8 40018 D0018

M1Queue9 40019 D0019

M1Queue10 40020 D0020

M1Read1 40027 D0027

M1Read2 40028 D0028

M1Read3 40029 D0029

M1Read4 40030 D0030

M1Read5 40031 D0031

The text and pictures below are for the Modbus protocol, but setting up registers for use with Omron is extremely
similar: simply replace the “4” at the start of every Modbus address with a “D”.

 DXL Wonderware Example

Page 24 Document DXL-APP-201-1.0

Select “Host Ports” from the drop down menu in DXL
Administrators configuration editor and double click the host
port we created earlier to bring up its properties window. Select
the “Masters” tab. To define command and status registers for
our master, we need to have selected the master from the list on
the left (i.e., there is a checkmark in the box next to Master 1’s
name) and have “Independent Master Registers” selected.

Highlight “Master 1” and click on “Edit Master Registers”. The
fields under “DXL Address” are the starting addresses of the
different sets of registers. “Length” indicates how many
registers are contained in a set. Change the settings to match the
following screenshot and click “OK”. This will make Master
1’s command registers 40001-40005, Master 1’s read status
registers 40027-40031 and Master 1’s Queue registers 40011-
40021. Note that register addresses are arbitrary, but
duplicating the settings shown here will make it easier to follow
the Wonderware tag setup in this document, since it uses the same addresses.

6.2 Turning off the “Done” Setting for Master Status Messages
This next step will make the script which decodes the master status messages simpler. Normally, the DXL system
can indicate whether an action happened independently (such as a master station with its own display and keypad
that calling an intercom using its keypad) or through a host response (such as a touchscreen initiating a call to a
station). Independent actions will be simply the command (“Ical 1 2” indicates a call was connected from master
1 to station 2), while responses to host commands will be the
command sent, prefixed by “Done” (“Done Ical 1 2”
indicates that the host request to connect master 1 to station 2
was successful). The DXL system can be set so that whether
the master initiated the connection itself, or through a
response to a host command, it will send the message without
the “Done” (so all connections will simply be “Ical 1 2”).

To set this behavior, go to the Host Port properties, Messages
tab, and check mark the “Respond to All Host Commands”
box and the “Use Status Message Format” box as shown
here.

6.3 Setting up Wonderware Tags for registers
in the DXL System:

Wonderware uses “tags” to keep track of data, both internal to the program and obtained from external sources
such as the DXL. In this section we will define tags that correspond to the registers we defined on the DXL and a
tag internal to Wonderware that monitors the status of the host connection

 DXL Wonderware Example

Document DXL-APP-201-1.0 Page 25

6.3.1 Creating Tags for communication with the DXL
Double clicking the “Tagname Dictionary” icon will bring up the following screen:

This screen is used to create and edit tag data. We need to define the following tags:

 M1Command1 to M1Command5 (used to send host master commands to the DXL)

 M1Queue1 to M1Queue10 (used to keep track of the call request queue for the host)

 M1Read1 to M1Read5 (used to receive status messages from the DXL)

The tags M1Command1 to M1Command5 should be set as “Read/Write”. All the other tags should be set as
“Read Only”.

A tag’s “Item” is set to the address of the DXL register that will be associated with the tag. DXL register
addresses were defined using DXL Administrator in section 6.1 of this document.

 Clicking “Tag Type” brings up a prompt with all the possible
tag types. Memory registers are internal to the Wonderware
programming and I/O registers are obtained from Modbus
TCP/IP or other protocols. All of the tags we are defining
should be of the type “I/O Integer”.

 DXL Wonderware Example

Page 26 Document DXL-APP-201-1.0

Each tag needs to have an Access Name associated with it. These
access names are associated with the topics that we defined in Section 2
of this document and will tell Wonderware where to get tag data from
and how often to look for new tag data. Click on the “Access Name:…”
button and then on the “Add…” button in the window that appears.
You will now be looking at the “Modify Access Name” window.

“Application Name” is the IO Communication Server. Modbus TCP/IP
communication protocol uses the “DASMBTCP” server, and Omron FINS communication protocol uses the
“FINSGTWY” server.

The “Topic Name” is the topic name assigned while configuring the IO Server. Create one access name for each
of the topic names (DXL_DEMO_READ, DXL_DEMO_WRITE, and DXL_DEMO_QUEUE).

The “Protocol” is the method used to exchange data between the DA Server and Wonderware and can be set to
DDE or SuiteLink.

The “When to advise server” item indicates whether to constantly poll these registers (Advise all items) or when
to only poll them when they are being used by any running script or when any icon using them is visible (Advise
only active items). For this example it does not matter what “When to advise server” is set to, since there will
always be visible icons using the tags, but we recommend “Advise all items” to be safe.

Create the rest of the tags as listed in the table in section 6.1, making sure that the register addresses in DXL
Administrator match the “Item” addresses in Wonderware, and assigning the following access names to the tags:

 Tags M1Queue1 to M1Queue10 will use the access name associated with the
DXL_DEMO_QUEUE topic

 Tags M1Command1 to M1Command5 will use the access name associated with the
DXL_DEMO_WRITE topic

 Tags M1Read1 to M1Read5 will use the access name associated with the DXL_DEMO_READ
topic

You should now have all the DXL I/O tags defined. Double check by clicking on “Select…”, which brings up a
list of all tags defined in the current Wonderware project.

6.3.2 Creating Tags for station status and master connection status
The most common way for the host to display station status is to have a separate register (or bit) for each station
indicating the station’s call request and connection status. This protocol does not provide that information
directly; instead the host software must set this internal information by reading the master status messages,
interpreting the status message codes it is interested in (such as “Icrq” call request messages) and use the
parameters (I.E. master and station number for an “Icrq” message) to set up its own internal registers which keep
track of the station’s status.

Likewise you will need to interpret the “master connection” messages such as “Ical” and “EndC” messages sent
by the DXL system when it connects or disconnects the audio, and set the master connection status appropriately.

 DXL Wonderware Example

Document DXL-APP-201-1.0 Page 27

In this example, the same format as the DXL’s native “Station Status Registers” and “Master Status Registers”
will be used.

The Station Status registers will indicate the connection state of the stations. Each bit of the station register
indicates a different condition that the station is either in or not. For any single condition, 1 means yes and 0
means no. The bits in a station status register that concern us in this example are bit 0 (the least significant bit),
which represents whether the station is in a call or not, and bit 2, which represents whether the station has a call
request pending or not. These registers will be named “S1Status” to “S6Status”

The Master Connection Status registers will indicate the connection state of Master 1. In this example, to be
consistent with the M1Status1 will contains a number indicating the type of device that Master 1 is connected to
(0=nothing, 1=master, 2=station, 3=page zone), and M1Status2 contains the ID number of the device.

To create the register tags to store the status of the
individual stations, create these new tags in the
Tagname Dictionary, using the “Memory Integer”
type. The settings for S1Status are shown here.

Create S1Status through S6Status, then M1Status1
and M1Status2.

The values in these registers will be set by the script that evaluates the master status messages.

6.3.3 Creating Tags for determining when new messages arrive
When the DXL system has a new message to send (for example, if a call request button is pushed), it will send it
to the host (if using peer to peer mode) or have it available on its master status registers for the next time the host
reads it (if using polled mode). Ultimately the host will have updated registers (tags) with the new information in
it. Whenever a new status message is received the host software should interpret this message with its scripts.

However, these scripts should only be executed when a new message is received, I.E. when any of the status
message registers change. In this example, the scripts will keep a temporary copy of the last block of 5 registers
received. On a periodic basis, it will compare the current value of the I/O registers and compare them to the last
block received. If the contents of any of the I/O registers is different than the equivalent register in the “last
received” registers, then a new message is received.

In this example, we will create new “Memory
Integer” tags “M1Last1” through “M1Last5” to
store the previous values that were received in
“M1Read1” through “M1Read5” for this purpose.
An example window for M1Last1 is shown here.

 DXL Wonderware Example

Page 28 Document DXL-APP-201-1.0

6.3.4 Creating a Pointer Tag to simulate array operation
The scripts that follow will write to the station
status tag for a station whenever a relevant
message for that station is received. An indirect
pointer type is created to simulate an array so that
the script can set a bit in that station’s tag, given a
station number in a parameter received from the
DXL system.

Create a new tag with the tagname “PointerTag”, of “Indirect Analog” type as shown here.

6.3.5 Wonderware Tag for determining communications status of DXL System
This tag is a DA server tag that indicates the connection
status of the DXL system

(Discrete is the Wonderware term for a Boolean On/Off
value)

This is set to 1 when the DA Server is connected to the
PLC (DXL system) and the DXL is responding to polls,
or 0 when the DA Server is not connected to the PLC
(DXL system).

6.4 Creating a Script to set Station Status and Master Connection Status
This step is to create a script for interpreting the messages, and setting the internal status registers when new call
requests are queued or connections made.

The main script will run whenever there is a new message.

This example will look for “Icrq” call request messages,
“Ican” cancel call request messages, “Ical” master-to-
intercom call connect messages, and “EndC” and “Iend”
master end call messages.

Create a Condition script.

Set Condition to:

Set Condition Type to “While True”.

Set Every Msec to 100 msec.

This must be faster than the poll rate defined in your topic
setup. If it is not, you will lose messages, as your Modbus
polling will occur faster than you are processing the messages. This will cause occasional call requests or other
updates to be missed. It is recommended to set this to at least half the time (I.E. twice the scan rate) as the polling
rate. The poll rate is set in Section 3 above. In this case, the poll rate is 200 ms, so this script execution rate should
be half that, or at least every 100 ms.

(M1Read1<>M1Last1) OR (M1Read2<>M1Last2) OR
(M1Read3<>M1Last3) OR (M1Read4<>M1Last4) OR
(M1Read5<>M1Last5)

 DXL Wonderware Example

Document DXL-APP-201-1.0 Page 29

The script in the screenshot is only the first part. The whole script is shown below.

The following outlines the details for this script.

6.4.1 Setting last register values
Once a change is detected, set the last register values to the current register values

M1Last1=M1Read1;
M1Last2=M1Read2;
M1Last3=M1Read3;
M1Last4=M1Read4;
M1Last5=M1Read5;

M1Last1=M1Read1;
M1Last2=M1Read2;
M1Last3=M1Read3;
M1Last4=M1Read4;
M1Last5=M1Read5;
IF (M1Last1==1) OR (M1Last1==2) THEN
 {Call Request or Cancel Call Request}
 IF (M1Last2==1) THEN
 IF ((M1Last3 > 0) AND (M1Last3 <= 6))THEN
 PointerTag.Name = "S" + Text(M1Last3, "#") + "Status";
 IF (M1Last1==1) THEN
 {Call Request}
 PointerTag.02 = 1;
 PlaySound("ringin.wav",1);
 ELSE
 {Cancel Call Request}
 PointerTag.02 = 0;
 ENDIF;
 ENDIF; {Stations 1-6}
 ENDIF; {Master 1}
ENDIF; {Call Request}
IF (M1Last1==7) THEN
 {Call Connect}
 IF (M1Last2 == 1) THEN
 IF ((M1Last3 > 0) AND (M1Last3 <= 6)) THEN
 PointerTag.Name = "S" + Text(M1Last3, "#") + "Status" ;
 PointerTag.00 = 1;
 ENDIF;
 M1Status1 = 1;
 M1Status2 = M1Last3;
 ENDIF;
ENDIF; {Call Connect}
IF ((M1Last1==10) OR (M1Last1==200) OR (M1Last1==201) OR (M1Last1==202)) THEN
 {Call Disconnect}
 IF (M1Last2 == 1) THEN
 IF (M1Status1==1) THEN
 IF ((M1Status2 > 0) AND (M1Status2 <= 6)) THEN
 PointerTag.Name = "S" + Text(M1Status2, "#") + "Status" ;
 PointerTag.00 = 0;
 ENDIF;
 ENDIF;
 M1Status1 = 0;
 M1Status2 = 0;
 ENDIF;
ENDIF; {Call Disconnect}

 DXL Wonderware Example

Page 30 Document DXL-APP-201-1.0

6.4.2 Setting station status for call request and call request cancel
If the message received is an Intercom Call Request (“Icrq”, code 1) or Intercom Call Request Cancel (“Ican”,
code 2), then set the call request status for the station.

Only process this call request if the second parameter indicates it is for this master (master 1), and the third
parameter indicates the station is between station 1 and 6

This next part takes the third parameter which is the station number, and sets a pointer tag name to
“Station#Status” where # is the station number in the third parameter.

If this message was a call request (M1Last1==1), it will set bit 2 in that tag to 1. Otherwise if the message was a
call request cancel (M1Last1==2), it will set bit 2 in that tag to 0.

Essentially, if the third parameter is “6” then it will set bit 2 of the “Station6Status” to 1 (if this is a call request)
or 0 (if this is a call request cancel). Also, if this is a call request, play a “ring” tone on the PC speakers.

Finally, close up the if statements

6.4.3 Setting station status and master connection status for intercom call connections
If the message received is an Intercom Call Connect (“Ical”, code 7), then set the call in progress status for the
station, and set the master connection status to “connected to that station.”

 IF (M1Last2==1) THEN
 IF ((M1Last3 > 0) AND (M1Last3 <= 6))THEN

 PointerTag.Name = "S" + Text(M1Last3, "#") + "Status";
 IF (M1Last1==1) THEN
 {Call Request}
 PointerTag.02 = 1;
 PlaySound("ringin.wav",1);
 ELSE
 {Cancel Call Request}
 PointerTag.02 = 0;

ENDIF;

IF (M1Last1==1) OR (M1Last1==2) THEN
 {Call Request or Cancel Call Request}

 ENDIF; {Stations 1-6}
 ENDIF; {Master 1}
ENDIF; {Call Request}

IF (M1Last1==7) THEN
 {Call Connect}

 DXL Wonderware Example

Document DXL-APP-201-1.0 Page 31

Only process this call connection if the second parameter indicates it is for this master (master 1), and the third
parameter indicates the station is between station 1 and 6

Set “Station#Status” bit 0 to 1 (call is in progress). The station number that is being called is in the third
parameter.

Set M1Status1 to 1 (In a call to a station) and M1Status2 to the station number it is in a call to (set from the third
parameter), and close off the IF statements.

6.4.4 Setting station status and master connection status for call disconnections
If the message received is an Intercom Call Disconnect (“EndC”, code 10), Intercom End call (“Iend”, code 200),
Master End call (“Mend”, code 201), or Page End call (“Pend”, code 202), then set the call ended status for the
station, and set the master connection status to “connected to nothing.” While this example does not use page or
master calls, if the master makes calls from its keypad (if it has one), this will correctly show the master’s status
on the host if it happens to make a page or master call.

Only process this message if the message is for this master (M1Last2==1)

If the master was currently connected to a station (Master connect status register M1Status1==1), and the station
is a valid station (between 1 station 1 and 6) then set that station’s status to “not in a connection” by setting
“Station#Status” bit 0 to 0. The station number it was connected to was in the M1Status2 register (set when the
master was connected to the station above).

 IF (M1Last2==1) THEN
 IF ((M1Last3 > 0) AND (M1Last3 <= 6))THEN

 PointerTag.Name = "S" + Text(M1Last3, "#") + "Status" ;
 PointerTag.00 = 1;
 ENDIF;

 M1Status1 = 1;
 M1Status2 = M1Last3;
 ENDIF;
ENDIF; {Call Connect}

IF ((M1Last1==10) OR (M1Last1==200) OR (M1Last1==201) OR (M1Last1==202)) THEN
 {Call Disconnect}

 IF (M1Last2 == 1) THEN

 IF (M1Status1==1) THEN
 IF ((M1Status2 > 0) AND (M1Status2 <= 6)) THEN
 PointerTag.Name = "S" + Text(M1Status2, "#") + "Status" ;
 PointerTag.00 = 0;
 ENDIF;

ENDIF;

 DXL Wonderware Example

Page 32 Document DXL-APP-201-1.0

Set the master connected status to “connected to no device, no ID number” no matter what it was connected to
previously.

6.5 Creating a Script to Request Current Status on Startup and Communication Loss
The DXL intercom system operates independently of the host computers, and can have call requests and other
activity before the host software is activated, or if the communication is lost between the host and the DXL
system. When the host starts up, or after communication is back up, there is a method to update the host with the
current DXL status. This can be done with the Stat command, which requests sending all information regarding
one master, or the AllS command, which requests sending all information for all masters. If the host issues this
when communication is resumed, then the intercom system will send all related activity for this master or masters
as standard messages as if that activity happened just now. For example, any active call requests will be sent with
the “Icrq” command (code 1) just as if the button was pressed now, and call connections would also be re-sent as
if it was connected now.

To configure the host to send this command to the DXL system, you can create a data change script. Set the
Tagname to the CommStatus tag. Then enter the following script.

 M1Status1 = 0;
 M1Status2 = 0;
 ENDIF;
ENDIF; {Call Disconnect}

IF (CommStatus==0) THEN
{Intercom communication lost,
clear all registers}

 S1Status=0;
 S2Status=0;
 S3Status=0;
 S4Status=0;
 S4Status=0;
 S5Status=0;
 S6Status=0;
 M1Status1=0;
 M1Status2=0;
 M1Last1=0;
 M1Last2=0;
 M1Last3=0;
 M1Last4=0;
 M1Last5=0;
ELSE

{Intercom communication resumed,
 send Stat to Resync}

 M1Command1=12;
 M1Command2=1;
 M1Command3=0;
 M1Command4=0;
 M1Command5=0;
ENDIF;

 DXL Wonderware Example

Document DXL-APP-201-1.0 Page 33

The CommStatus tag was previously defined, and indicates the connection status (0=not connected, 1=connected).

When the communication is lost (CommStatus==0), the script sets all stations to not connected and not calling in,
and the master to not connected. When the communication link resumes, the script sends the Stat command (code
12) for master 1 to indicate to the DXL system to re-send the system status messages including active call requests
and audio connections.

6.6 Configuring Host Behaviour
Now we need to associate user actions with commands we want sent to the DXL, and tag values with what we
want displayed on screen. For information on the commands and register structure used for communication
between the DXL and a host, see “DXL Host Interface Specifications”, which is available for download at the
Harding Instruments website.

6.6.1 Configuring the Communication Status Indicator
Double click on the communication status indicator to bring up
the properties window for the communication status indicator:

We want the indicator to be green when communication
between the host and DXL is working, and red when there is a
problem. Click on the “Fill Color: Discrete” button to get to the
following window.

Set “Expression” to the name name of our communication
status tag (CommStatus).

 By clicking on the color boxes at the bottom of the window, you can set the color that will be displayed when
CommStatus is equal to 1 (communication is Ok) or equal to 0 (communication problem).

CommStatus

 DXL Wonderware Example

Page 34 Document DXL-APP-201-1.0

6.6.2 Assigning Actions/Status Indicators to Intercom Icons
Double-click an intercom icon to bring up its properties
window then click the “Action” button to set up what will
happen when the intercom icon is clicked on. We will set up
the icon so that clicking it will either cause a call to be made
from the host master to the station (if that master is not
already in a call to that station), or to end the call (if there is
already a call in progress) between the master and that station.
Enter the following in the script window:

The script checks M1Status1 and M1Status2 to determine if the host master is connected to a station and if it is, if
it connected to Station 1. If the master is connected to station 1, the “EndC” command (code 10) to end the call on
Master 1 is sent to the DXL (via the M1Command tags). If the host master is not connected to Station 1, an “Ical”
command (code 7) is sent to the DXL to place a call from Master 1 to Station 1.

To set up the icon to blink when the call button has been
pressed, select the “Blink” button in the station’s properties
window to bring up this window. Select a blink Fill Color as
shown and enter the following into the
”Expression – Blink When:” window

This setting blinks the intercom icon between its normal colour
and yellow when a call request comes in (i.e. when bit 2 of
S1Status is a 1).

IF M1Status1==1 AND M1Status2==1 THEN
 M1Command1=10;
 M1Command2=1;
 M1Command3=0;
 M1Command4=0;
 M1Command5=0;
ELSE
 M1Command1=7;
 M1Command2=1;
 M1Command3=1;
 M1Command4=0;
 M1Command5=0;
ENDIF;

S1Status.02==1

 DXL Wonderware Example

Document DXL-APP-201-1.0 Page 35

To set up the icon to change the intercom station color when it
is being called from the master, select the “Analog Fill Color”
button.

Set the “Expression” to

Break points are the values of the expression at which the color
will change. For station 1, we want to look at values of the tag S1Status so the expression is simply S1Status.
S1Status will have a value of 1 when Station 1 is in a call, and the setting above will cause its icon to turn green.
If S1Status has a value of 2 then Station 1 is listening to music. If S1Status has a value of 4, Station 1 has a
pending call request. If S1Status is greater than or equal to 8, station 1 is faulted and its icon will turn red. In this
example we are not setting up music listening so it doesn’t matter what color 2 is. 4 (call request pending) should
be set to grey, or else the station will flash between black and yellow instead of grey and yellow when a call
request is made.

6.6.3 Assigning Actions to the Answer Next Call and End Call Buttons
 This is very similar to defining what will happen when an
intercom icon is clicked on. Double click on the “Answer
Next Call” button to bring up that button’s properties
window, then click on “Action”. The script below sends the
“Next” command to the DXL telling it to connect Master 1
(the host master) to the next station in Master 1’s call request
queue.

We may also want to make the “Answer Next Call” button
disappear if there are no call requests queued. From the
“Answer Next Call” button properties window, click on
“Miscellaneous: Visibility” and enter the following expression.

When M1Queue1 is not equal to zero, there is a call queued for the host master so the button should be visible.
Since M1Queue1 is the top of the queue, it is the only queue tag we need to check.

S1Status

M1Command1=21;
M1Command2=1;
M1Command3=0;
M1Command4=0;
M1Command5=0;

M1Queue1

 DXL Wonderware Example

Page 36 Document DXL-APP-201-1.0

To set up the “End Current Call” button, go to its “Actions”
window. The script below sends the DXL the “EndC”
command to end the call between Master 1 and whatever

Master 1 is connected to.

We can make the “End Current Call” button disappear if there is
no call to end. Select “Miscellaneous: Visibility” from the “End
Current Call” buttons properties window and enter the
following expression:

M1Status1 will be equal to zero if the host master does not have a call in progress, and the above expression will
evaluate to zero, and the button will disappear.

6.6.4 Playing a sound when call requests are active
There are two ways to play a sound when there are calls in the intercom queue.

One would be to periodically sound a reminder tone every few seconds until all calls are answered.

The other method would be to play a sound when a new call comes into the queue. Methods to do each of the
above are shown below. That method is already included in the scripts above, but you can remove the PlaySound
command to not play a sound when a call request comes in.

You can have a sound play when a new call comes into the queue and also have a periodic reminder tone by using
both methods.

M1Command1=10;
M1Command2=1;
M1Command3=0;
M1Command4=0;
M1Command5=0;

M1Queue1

 DXL Wonderware Example

Document DXL-APP-201-1.0 Page 37

6.6.4.1 Playing a periodic sound when calls are in the queue
To play a periodic reminder tone, you can use the queue
registers. When there is a call in the queue, the M1Status1
queue register will be non-zero.

You can create a condition script which will act periodically
whenever M1Status1 <> 0, and have it play a sound or do
other commands. The condition will be “M1Queue1<>0”, the
Condition Type should be “While TRUE”, and the period
between tones would be in the Every Msec box (10000 =
every 10.000 seconds). To play a notify sound using a sound
from the Windows sound files, you can use the following
script command

6.6.4.2 Playing a sound when a new call enters the queue
This is already done in the script made up earlier where the condition is:

This portion of the script handles when new call request or call request cancel messages come in.

To change or remove the tone, change the “PlaySound(“ringin.wav”,1);” line in this script

PlaySound(“notify.wav”,1);

(M1Read1<>M1Last1) OR (M1Read2<>M1Last2) OR
(M1Read3<>M1Last3) OR (M1Read4<>M1Last4) OR
(M1Read5<>M1Last5)

IF (M1Last1==1) OR (M1Last1==2) THEN
 {Call Request or Cancel Call Request}
 IF (M1Last2==1) THEN
 IF ((M1Last3 > 0) AND (M1Last3 <= 6))THEN
 PointerTag.Name = "S" + Text(M1Last3, "#") + "Status";
 IF (M1Last1==1) THEN
 {Call Request}
 PointerTag.02 = 1;
 PlaySound("ringin.wav",1);
 ELSE
 {Cancel Call Request}
 PointerTag.02 = 0;
 ENDIF;
 ENDIF; {Stations 1-6}
 ENDIF; {Master 1}
ENDIF; {Call Request}

 DXL Wonderware Example

Page 38 Document DXL-APP-201-1.0

6.6.5 Configuring Queue Text Display
Three different kinds of call requests can occur in a DXL system: a call request from a station, a call request from
a master, and an audio level alarm. First, we will learn to display only the ID number of the device calling the
master. After that we will look at a more complex example that displays the device type and ID number.

6.6.5.1 Simple Text Display
To display the station number in the call request queue list,
double click on the “#” symbol in the list to open its properties
window and then select “Value Display: Analog”. M1Queue1
and M1Queue2 contain the device type and device ID,
respectively, of the first call request in Master 1’s queue. We
therefore want to set the Expression to “M1Queue2”, so its
value will take place of the “#” symbol, as shown here.

6.6.5.2 More Complex Text Display Using Strings and Scripts
To make a more useful text display we need to define a few more tags to hold the text to be displayed, and then
write some scripts (small programs) to manipulate those tags.

 Define the following tags with a tag type of “Memory Message”:

 QueueEntry1
 QueueEntry2
 QueueEntry3
 QueueEntry4
 QueueEntry5

These tags will hold the display text for each of the entries in the host masters queue. We will now write a set of
scripts to automatically enter the proper text into these tags based on the content of the tags M1Queue1 to
M1Queue10. Expand the “Scripts” item in the application explorer pane and right click on “Data Change”. When
any of the M1Queue tags change value, there has been some change in the call request queue and we need to
evaluate what should be displayed.

M1Queue2

 DXL Wonderware Example

Document DXL-APP-201-1.0 Page 39

The script shown here checks the type and ID number of the
first call request in the queue, and puts an appropriate string
of text into QueueEntry1. This script is executed when
M1Queue1 changes value and an identical script should be
created that executes when M1Queue2 changes value. The
script checks the value of M1Queue1 to determine which
prefix (“Station “, “Master “, or “ALA Station “) should be
appended to the QueueEntry1 string, then appends the ID
number of the device requesting a call (which is contained in
M1Queue2). The Text() function used here takes a number
from a register and converts it into a string that can be stored
in the QueueEntry tag. Its syntax is “Text(<tag to be
converted to string>, <number formatting>)”. Please see
Wonderware’s scripting language documentation for more
information.

For each pair of M1Queue tags representing a single QueueEntry tag, a similar script needs to be created.
QueueEntry2 is updated when M1Queue3 or M1Queue4 change value, QueueEntry3 is updated when M1Queue5
or M1Queue6 change value, QueueEntry4 is updated when M1Queue7 or M1Queue8 change value, and
QueueEntry5 is updated when M1Queue9 or M1Queue10 change value.

IF M1Queue1==1 THEN
 QueueEntry1 = "Station " +Text(M1Queue2, "#");
ELSE
 IF M1Queue1==2 THEN
 QueueEntry1 = "Master " +Text(M1Queue2, "#");
 ELSE
 IF M1Queue1==3 THEN
 QueueEntry1 = "ALA Station " +Text(M1Queue2, "#");
 ELSE
 QueueEntry1 = "";
 ENDIF;
 ENDIF;
ENDIF;

